Neuroinformatics (CS-GY 9223 / CS-UY 3943)

Spring 2024

This is a Ph.D.-level topics course covering topics on modeling, signal processing as well as database management of neuroscience data.  Students from statistics, neuroscience, and engineering are all welcome to attend. Neuroscience background is not required but self-motivated interest in neuroscience is highly recommended.

Advanced undergraduates may enroll upon permission from instructor.

Time: Tuesdays 2-4:30pm
Place: 6 MetroTech Center Room 207
Professor: Erdem Varol
Email: ev2240@nyu.edu
Office Hours: Mondays 12-2pm @ 370 Jay Street, Room 1158 or Zoom
Slack channel: neuroinfoclass.slack.com

TA: Tianxiao He
Email: th3129@nyu.edu
Office Hours: Friday 1-3pm @ 370 Jay Street, Room 1161

Course goal: We will introduce a number of advanced machine learning and computer vision tools relevant in neuroscience. Each technique will be illustrated via application to problems in neuroscience. We will cover topics including 1) computational models of the nervous system function and structure across several species, 2) development of computer vision and signal processing tools for analyzing neuroscience data and 3) tools and databases for management and sharing of large scale neural data.

Prerequisites: A good working knowledge of basic statistical concepts such as likelihood, Bayes' rule, Gaussian random vectors and linear-algebraic concepts such as regression and principal components analysis. Coding experience in Python, Matlab and/or R is necessary for course projects.

Evaluation: Final grades will be based on class participation (20%), a midterm project (30%) as well as a final project (50%). The projects can involve either the implementation and justification of a novel analysis technique, or a standard analysis applied to a novel data set. Students can work in pairs or alone (paired team projects have to be twice as comprehensive).

Schedule


Date Topic Reading Materials
January 23, 2024
Intro and survey of topics
Stegle '15, Paninski '18, IBL '22
Lecture 1 slides (1/23/2024)
January 30, 2024
Macro-scale brain imaging: MRI, fMRI, EEG, fNIRS
Ladd '18, Li '22
Lecture 2 slides (1/30/2024),MRI Video, DTI Video
February 6, 2024
Micro-scale brain imaging I: electrophysiology, voltage imaging
Lewicki '98, Pachitariu '16, Steinmetz '21
Lecture 3 slides (2/6/2024)
February 13, 2024
Micro-scale brain imaging II: single cell resolution functional imaging, microscopy techniques
Abdelfattah '22, Pnevmatikakis '16 Lecture 4 slides (2/13/2024)
February 20, 2024
Molecular-scale imaging & genomics:  spatial transcriptomics, scRNA-seq
Condylis '22, Bugeon '22
Lecture 5 slides (2/20/2024)
February 27, 2024
Biomedical image segmentation
Stringer '20
Lecture 6 slides (2/27/2024)
March 5, 2024
Biomedical image registration
Sotiras '13, Windolf '23 Lecture 7 slides (3/5/2024)
March 12, 2024
Midterm project presentations

Write-up due March 15
March 19, 2024
SPRING BREAK (No class)
March 26, 2024
Pose estimation, behavioral video analysis
Mathis '18,  Biderman '23
Lecture 8 Slides (3/26/2024) (Guest lecture: Amin Nejatbakhsh)
April 2, 2024
Super-resolution, signal localization
Boussard '21, Saguy '23
Lecture 9 slides (4/2/2024), Video
April 9, 2024
Neural decoding
Glaser' 20, Zhang' 23
Lecture 10 Slides (4/9/2024) (TA lecture: Tianxiao He)
April 16, 2024
Network analysis
Bassett '17
Lecture 11 slides (4/16/2024), Video
April 23, 2024
Connectivity mapping
Triplett '23
Old slides
April 30, 2024
Final project presentations
Write-up due May 8

Essential reads

Textbooks:

  • Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT press.

  • Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press. Online link.

  • Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature neuroscience, 20(3), 353-364.

Papers

  • Horikawa, T., Tamaki, M., Miyawaki, Y., & Kamitani, Y. (2013). Neural decoding of visual imagery during sleep. Science, 340(6132), 639-642.

  • Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 4.

  • Pachitariu, M., Steinmetz, N. A., Kadir, S. N., Carandini, M., & Harris, K. D. (2016). Fast and accurate spike sorting of high-channel count probes with KiloSort. Advances in neural information processing systems, 29.

  • Pnevmatikakis, E. A., Soudry, D., Gao, Y., Machado, T. A., Merel, J., Pfau, D., ... & Paninski, L. (2016). Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron, 89(2), 285-299.

  • Gabitto, M. I., Pakman, A., Bikoff, J. B., Abbott, L. F., Jessell, T. M., & Paninski, L. (2016). Bayesian sparse regression analysis documents the diversity of spinal inhibitory interneurons. Cell, 165(1), 220-233.

  • Rao, A., Barkley, D., França, G. S., & Yanai, I. (2021). Exploring tissue architecture using spatial transcriptomics. Nature, 596(7871), 211-220.

  • Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist algorithm for cellular segmentation. Nature methods, 18(1), 100-106.

  • Zaimi, A., Wabartha, M., Herman, V., Antonsanti, P. L., Perone, C. S., & Cohen-Adad, J. (2018). AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks. Scientific reports, 8(1), 3816.

  • Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J., & Dalca, A. V. (2019). VoxelMorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging, 38(8), 1788-1800.

  • Xu, T., Nenning, K. H., Schwartz, E., Hong, S. J., Vogelstein, J. T., Goulas, A., ... & Langs, G. (2020). Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage, 223, 117346.

  • Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature neuroscience, 21(9), 1281-1289.

  • Biderman, D., Whiteway, M. R., Hurwitz, C., Greenspan, N., Lee, R. S., Vishnubhotla, A., ... & Paninski, L. (2023). Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools. bioRxiv.

  • Nehme, E., Weiss, L. E., Michaeli, T., & Shechtman, Y. (2018). Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, 5(4), 458-464.

  • Boussard, J., Varol, E., Lee, H. D., Dethe, N., & Paninski, L. (2021). Three-dimensional spike localization and improved motion correction for Neuropixels recordings. Advances in Neural Information Processing Systems, 34, 22095-22105.

  • Glaser, J. I., Benjamin, A. S., Chowdhury, R. H., Perich, M. G., Miller, L. E., & Kording, K. P. (2020). Machine learning for neural decoding. Eneuro, 7(4).

  • Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., ... & Sussillo, D. (2018). Inferring single-trial neural population dynamics using sequential auto-encoders. Nature methods, 15(10), 805-815.

  • Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of neural engineering, 15(5), 056013.

  • Kovács, I. A., Barabási, D. L., & Barabási, A. L. (2020). Uncovering the genetic blueprint of the C. elegans nervous system. Proceedings of the National Academy of Sciences, 117(52), 33570-33577.

  • Hu, T., Leonardo, A., & Chklovskii, D. (2009). Reconstruction of sparse circuits using multi-neuronal excitation (RESCUME). Advances in Neural Information Processing Systems, 22.

  • Mishchencko, Y., Vogelstein, J. T., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals of Applied Statistics, 1229-1261.

  • Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160, 73-83.

  • Yan, G., Vértes, P. E., Towlson, E. K., Chew, Y. L., Walker, D. S., Schafer, W. R., & Barabási, A. L. (2017). Network control principles predict neuron function in the Caenorhabditis elegans connectome. Nature, 550(7677), 519-523.

  • Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. Neuroimage, 53(4), 1197-1207.